Tissue factor pathway inhibitor の欠損マウス

神 崎 勇 一*

Tissue Factor Pathway Inhibitor Deficient Mice
Yu-ichi KAMIKUBO*

Key words: tissue factor pathway inhibitor deficient mice, activated blood coagulation factor VII, tissue factor, embryonic stem cell, disseminated intravascular coagulation, vasculogenesis

はじめに

Tissue factor pathway inhibitor (TFPI) は、組織因子・活性型血液凝固 VII 因子複合体（TF/VIIa）により開始される外因系凝固反応を制御する Kunitz 型プロテアーゼインヒビターである。TFPI は生体内では主に血管内皮細胞や血管平滑筋細胞、線維芽細胞、巨核球、単球で産生されるが、肝細胞ではほとんど発現されない。血管内皮細胞に結合している TFPI はヘパリンを投与する事で血中に遊離してくることから、内皮細胞上でのヘパリン酸プロテオグリカンに結合していると推定される。TFPI の生体内での役割は欠損症や異常症が見いだされていない現在、不明な点も多いが、抗体により TFPI を除去した動物では低濃度の TF により容易に血管内過凝固状態を呈すること、さらにエンドトキシンにより誘発される過凝固状態の抑制に TFPI の役割が有効であることから、内皮細胞の抗血栓機能の中心的役割を果たしていると考えられる。

現在までは、ヒト TFPI のタンパク質構造と機能との関連、遺伝子構造については次のような知見が得られている。

① TFPI は 276 残基からなる一本鎖糖蛋白質であり、分子内に 3 個の Kunitz 型阻害領域が存在する。TFPI は第 2 Kunitz 領域（K2）で活性型血液凝固 X 因子（Xa）と結合した後、さらに、第 1 Kunitz 領域（K1）で TF/VIIa と結合することにより外因系凝固反応を阻害する。

② TFPI の凝固阻害活性はヘパリンで促進され、ヘパリンはカルボキシル末端の塩基性アミノ酸が集中する領域および第 3 Kunitz 領域（K3）に結合する。③血中には、リボ蛋白質に結合した LDL/VLDL 結合型や HDL 結合型、さらにリボ蛋白質に結合していない遊離型 TFPI の 3 つの形が存在する。TFPI は LDL/VLDL にカルボキシル末端の塩基性アミノ酸の集中する領域を介して結合し、一方、HDL では HDL 中のアポリボ蛋白質 A-II と S-S 結合を形成して存在する。④ヒト TFPI 遺伝子は染色体の 3q31-32.1 に位置し、約 70 kb で 9 つのエクソーンと 8 つのイントロンから構成される。K1, K2, K3 はそれぞれエクソーン 4, エクソーン 6, エクソーン 8 にコードされている。5'-flanking 領域には TFPI 転写に関与するエレメントとして AP-1 椎モチーフや GATA モチーフ、さらに NF-1 モチーフが同定されているが、それらの

*（財）化学及血液療法研究所 菊池研究所 血液製剤研究部（〒 869-1298 佐賀県唐津市志村川辺）
Blood Products Research Department, The Chemo-Sero-Therapeutic Research Institute
実際の機能は明らかでないと。⑤ TFPI には翻訳後の修飾として N-グリコシド型糖鎖と O-グリコシド型糖鎖の付加、さらにリン酸化セリンの存在が報告されているが、その意義については明らかでない。

1997 年、Huang らは TFPI の生理的役割をより明らかにする目的で、TFPI の K1 のみを欠失させたヘテロ接合体の TFPI 欠損（TFPI_{k1}^{−/−}）マウスとホモ接合体の TFPI 欠損（TFPI_{k1}^{−/−}）マウスを作製した。その結果、TFPI の K1 が発生上重要な役割を果たしていることが、初めて明らかとなった。本稿では、この TFPI の K1 欠損マウスについての報告を紹介する。

TFPI 欠損マウスから得られる情報

TFPI_{k1}^{−/−}マウスはエクソン 4（K1 をコードする）とイントロン D の部分を欠失させたターゲティングベクターを胚性幹細胞（ES 細胞）に導入し、得られた相同組換え ES 細胞を胚盤胞中に注入することで作出した。TFPI_{k1}^{+/−}マウスの血漿中には野生型 TFPI（分子量 43,000）に加え、K1 を欠失した分子量 37,000 の TFPI_{dest1} が約 41%存在し、TFPI の TF/VIIa 阻害活性も野生型 TFPI（TFPI_{k1}^{+/+}）マウスの 46%までに低下する。しかし、TFPI_{k1}^{+/−}マウスの血小板数や血球フィブリノーゲンレベルは TFPI_{k1}^{+/+}マウスと同程度であり、特別な異常は見られない。次に、ホモ接合体の TFPI_{k1}^{−/−}マウスを作出するために TFPI_{k1}^{+/−}マウス同士の交配を行った。しかし、得られた 233 の新生マウスのうち 35%が TFPI_{k1}^{+/−}マウス、65% が TFPI_{k1}^{−/−}マウスであった。TFPI_{k1}^{−/−}マウスのうち約 60%は胎齢 10.5 日までに死亡し、残りの 40%は胎齢 11.5 日以降も生存するが、最終的には子宮内すべて死亡する（図 1）。そこで、死亡の原因を明らかにする目的で、TFPI_{k1}^{−/−}マウスの胎記の初期（胎齢 11.5 日まで）と後期（胎齢 11.5 日以降）に分けた形態学的および組織学的解析を行った。その結果、胎齢 8.5 日の TFPI_{k1}^{−/−} は、TFPI_{k1}^{+/+} より TFPI_{k1}^{−/−} と同様に正常であるが、胎齢 9.5 日から 11.5 日にかけて卵黄囊内に出血が見られ、卵黄囊血管内血液の不足している（図 2）。中程度の発育不良を示す胚では内胚葉細胞層と中胚葉細胞層の剥離により、卵黄囊、胎盤、脈側卵黄囊内の血管中での赤血球量が減少し、さらに重篤な発育不良の胚では内胚葉細胞層と中胚葉細胞層の剥離を伴う卵黄囊構造の異常が生じた。したがって、胎齢 11.5 日までに見られる TFPI_{k1}^{−/−}マウスの致死は、血管形成の不全によりもたらされた卵黄囊内の出血と血液の損失に伴う循環障害が原因と考えられる。最近、TF 欠損マウスの血液凝固 V 因子欠損マウスで卵黄囊血管形成不全による死亡が報告されている。両者における血液凝固反応とトロンビン形成の重要性が示唆されている。

TFPI の K1 が初期胚の血管形成にどのように関与しているかは、今後の課題として注目され
図 2 TFPlk_{1-/-} と TFPlk_{3-/-} の胎齢 10.3 日の胚の写真（文献 8 より引用）。
TFPlk_{1-/-} は、TFPlk_{3-/-} に比べ卵黄囊内に顕著な出血が見られる（矢印とやじり）。
出血とそれに伴う脈管不全が胚の衰弱と死をもたらすと考えられる。（転載許可取得）

図 3 TFPlk_{3-/-} と TFPlk_{3-/-} の胎齢 14.5 日と 16.5 日の胚の写真（文献 8 より引用）。
（A）TFPlk_{1-/-} と TFPlk_{3-/-} の胎齢 14.5 日の写真、TFPlk_{1-/-} は TFPlk_{3-/-} に比較して、脊髄（矢印）と尾（やじり）に出血が見られる。（B）TFPlk_{1-/-} と TFPlk_{3-/-} の胎齢 16.5 日の胚の写真。TFPlk_{3-/-} は頭蓋内に出血が見られ（やじり）、尾が短くなっている。（転載許可取得）

一方，胎齢 11.5 日を越えて生存した胚では心臓や血管などの器官は正常に発生してくるが，尾が短く，胎齢日数が進むに伴い，頭部，脊髄，尾に出血が見られ，胚の成長が遅延する（図 3）。
さらに，胎齢 12.5 日を越えた胚では，肝臓，腸，脳にフィブリン（フィブリノーゲン）沈着を伴う血管内血栓が見られる。よって，胎齢 11.5 日
を越えて見られる TFPI−− マウスの致死は、TF/VIIa により生じた汎発性血管内凝固症候群 (DIC) に関連する重篤な出血が原因と考えられる。

以上のことから、TFPI の K1 は発生上重要
な役割を果たしており、その作用は主に、初期胚における血管形成促進と後期胚における抗血栓作用を介したものであると推定される。

文 献

8) Huang Z-F, Higuchi D, Lasky N, Broze GJ Jr.: Tissue factor pathway inhibitor gene disruption

